Lecture-10

One dimensional solution of Laplace” Equation in

spherical coordinate system
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One dimensional solution of Laplace’ Equation in

spherical coordinate system

Next we consider the Laplace’ Equation in spherical coordinates:
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In this system we consider that V is a function of r only.
Then the Laplace’ equation reduces to

vy :ii(rzﬂjzo -~ (a)
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Again we exclude r = 0 from our solutions. Multiplying both

Sides by r? we get
Q(rzﬁvjzo -~ (b)
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r = A
or
or N = A --(c)
or r?
Integrating once again, we get
or V=- ré + B —(d)

where A and B are arbitrary constants to be evaluated. This
equation represents a family of equi — potential surfaces for
r = constant.

Let us choose two such equipotential surfaces at r = a and
R=b,b>a,suchthatatr=a,V=V,andatr=b,V=V,
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We immediately recognise that this is the example of concentric
spheres or Spherical capacitor
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Solving these two equations we get
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Pradeep Singla

A =




Substituting the values of A and B in equation (d), we get,

v
5 j

Let V, = 0 Then equation (g) becomes
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Let us, next, follow our Five step procedure to determine the
capacitance of the spherical capacitor
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We recognize that D, = D = p evaluated on any one of the
capacitor surfaces. Choosing the surface with p = as our surface,

E V -
§

we get, P \V/
Dy = ps = (1_1j
a b

Therefore the charge Q on the capacitor plate is
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Therefore we get the expression for the spherical capacitor as

_ |Q| _ £ V 4ra’ Are

a —
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a b a b

C _ 4 rs
1 1
(2-5)

For an isolated sphere, i.e., as b - we get

C

C = 4reca
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Finally let us consider V as a function of 8 only . In this case
The Laplace’s equation reduces to

ViV=— L @ (sin@ﬂj:O
r-siné@ oo

We excluder=0 and ©=nm/2, n=0,%1, 12, %3, ...

Multiplying both sides of the above equation by r? sinB, we get
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Integrating the equation with respect to 0 we get,

.oV
sinf——=A
o
or oV — _A A is an arbitrary constant
o0 sind

Integrating once again, we get,

V =Aln(tané&/2)+B

This equation represents a family of equipotential surfaces for
constant 6. Let us consider two such equipotential surfaces at
O=n/2and B=aandletV=0at0 =mn/2andV =Va at 6 =0.
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The equipotential surfaces are cones as shown in figure below.
Such a system is called a conical antenna

,at0 =«

Insulating gap

V=0at0=0

>‘ Ground plane

Applying these two boundary conditions to the equation (i),
Solving for A and B and substituting these values in (i),we get,

V=V, In(tan 8/ 2)
In(tan ¢ / 2)
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We follow our usual procedure and determine the capacitance
of the conical antenna

We have Y, :Va In(tan9/2)
In(tan ¢ / 2)

We use E = -V V to find the field strength, as

Eow1Ng_ V. a,
r 06 rsin@ In(tan« / 2)

Next we determine D using D = g, E as
= eV A

D=¢E=——— a a,
rsin@ In(tan «/ 2)

Pradeep Singla




D =D.a;=Dya, , and D, = ps and therefore, on the conical
surface where B = a, the charge density is,

g\

a

rsina In(tana / 2)

The total charge Q on the conical surface is therefore,

oo 27T (c;V

ds = — 2 I sin acd gdr
Q= [ﬁps H rsina In(tana /2) ?
_ 21 eV ojodr

In(tana / 2) , o
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This equation leads to an infinite value of charge and capacitance.

Therefore we have to consider a cone of finite size.

Our expression for Q is approximate, since, theoretically, the
potential surface 0= a extends from r =0 to r = e=. But our physical
conical surface extends from r =0 to say, r =r, . The approximate

capacitanceiis DT et
1

- In(cotar/ 2),
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