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Next we consider the Laplace’ Equation in spherical coordinates:
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In this system we consider that V is a function of r only.
Then the Laplace’ equation reduces to 
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Again we exclude r = 0 from our solutions. Multiplying both 
Sides by r2 we get 
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One dimensional solution of Laplace’ Equation  in 
spherical coordinate system

Case 1:
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Integrating once again, we get
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where A and B are arbitrary constants to be evaluated. This 
equation represents a family of equi – potential  surfaces for 
r = constant.

Let us choose two such equipotential surfaces at r = a and 
R = b, b > a , such that at r = a, V = Va and at r = b, V = Vb
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Solving these two  equations we get
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We immediately recognise that this is the example of concentric
spheres or Spherical capacitor
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Substituting the values of A and B  in equation (d), we get,
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Let Vb = 0 Then equation (g) becomes

--- (g)
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Let  us, next,  follow our Five step procedure to determine the 
capacitance of the spherical capacitor 
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We recognize that DS = DN = ρS evaluated on any one of the 
capacitor surfaces. Choosing the surface with ρ = as our surface,
we get, 
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Therefore the charge Q on the capacitor plate is 
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Therefore we get the expression for the spherical capacitor as 
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For an isolated sphere , i.e., as b → we get 
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Finally let us consider V as a function of θ only . In this case
The Laplace’s equation reduces to 
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We exclude r = 0   and    θ = nπ/2,        n = 0, ± 1, ±2, ±3, . . .

Multiplying both sides of the above equation by r2 sinθ, we get
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Integrating the equation with respect to θ we get,

or 
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Integrating once again, we get,
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This equation represents a family of equipotential surfaces for
constant θ. Let us consider two such equipotential surfaces at 
θ =π/2 and  θ = α and let V = 0 at θ =π/2 and V = Va  at θ =0.

--- (i)
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The equipotential surfaces are cones as shown in figure below.
Such a system is called a conical antenna

α

θ Insulating gap

Ground plane

V = Va at θ = α

V = 0 at θ = 0

Applying these two boundary conditions to the equation (i), 
Solving for A and B and substituting these values in (i),we get,
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We follow our usual procedure and determine the capacitance 
of the conical antenna
We have 2
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We use E = -  V to find the field strength, as
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Next we determine D using D = ε0 E as
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D = DS aS = DN aN , and DN = ρS and therefore, on  the conical
surface where θ = α, the charge  density is,  
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The total  charge Q on the conical surface is therefore, 
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This equation leads to an infinite value of charge and capacitance.

Therefore we have to consider a cone of finite size.

Our expression for Q is approximate, since, theoretically, the 
potential surface θ= α extends from r = 0 to r = ∞. But our physical
conical surface extends from r = 0 to say,  r = r1 . The approximate 
capacitance is 
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